more on this theme     |     more from this thinker


Single Idea 13531

[filed under theme 5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models ]

Full Idea

Model theory helps one to understand what it takes to specify a mathematical structure uniquely.

Gist of Idea

Model theory reveals the structures of mathematics

Source

Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)

Book Ref

Wolf,Robert S.: 'A Tour Through Mathematical Logic' [Carus Maths Monographs 2005], p.165


A Reaction

Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.


The 19 ideas from 'A Tour through Mathematical Logic'

Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
A 'tautology' must include connectives [Wolf,RS]
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
Model theory reveals the structures of mathematics [Wolf,RS]
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]